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ABSTRACT: We demonstrate that a new free energy func-
tional in the integral equation theory of molecular liquids gives
accurate calculations of hydration thermodynamics for druglike
molecules. The functional provides an improved description of
excluded volume effects by incorporating two free coeflicients.
When the values of these coefficients are obtained from experi-
mental data for simple organic molecules, the hydration free
energies of an external test set of druglike molecules can be
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calculated with an accuracy of about 1 kcal/mol. The 3D RISM/UC method proposed here is easily implemented using existing
computational software and allows in silico screening of the solvation thermodynamics of potential pharmaceutical molecules at
significantly lower computational expense than explicit solvent simulations.
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B INTRODUCTION

The integral equation theory (IET) of molecular liquids is a
theoretical framework for modeling solute —solvent effects based
upon the molecular Ornstein—Zernike (MOZ) equation. IET has
previously been used in qualitative studies of solution chemistry
phenomena ranging from solvation of monatomic ions to solvent
effects on biomolecules and supramolecular assemblies.' ® The
theory allows the calculation of solvation thermodynamics and
solvent structure at significantly lower computational expense than
molecular dynamics simulations. Although IET has been an active
topic of academic research for over 40 years, in its current state it does
not permit accurate calculations of solvation thermodynamics across
multiple classes of molecules, which has prevented it from being
widely used in many practical applications such as pharmaceutical
research and development.”'® The purpose of this article is to show
that the hydration free energies (HFE) of molecules ranging from
simple alkanes to pharmaceuticals can be calculated accurately using a
new free energy functional in the scope of the 3D reference interac-
tion site model (an IET method). Although the new functional is in
an early stage of development, the results are already as accurate as
those obtained from well-developed implicit solvent models that
contain a large number of empirical parameters. Unlike the con-
tinuum solvent models, however, the IET model retains information
about the solvent structure and can be used to probe specific
solute—solvent interactions.

The hydration free energy (HFE) is a key thermodynamic
parameter in characterizing a solute—solvent system. Many physico-
chemical properties of molecules are defined by their solvation and
acid—base behavior, which can be estimated from their HFEs. For
example, HFEs have been used in the calculation of acid—base
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dissociation constants (pKa’s),11 aqueous solubilities,"*** octanol—

water partition coefficients,"* '® and protein—ligand binding free
energies.”'® As these physicochemical properties are used in
predicting the pharmacokinetic behavior of novel pharmaceutical
molecules," improving the accuracy of computational methods to
calculate HFEs would have widespread benefits.

B THEORY

Background. Integral equation theory (IET) is based on the
molecular Ornstein—Zernike (MOZ) integral equation of clas-
sical density functional theory, which operates with binary spatial
density correlation functions. Due to the high-dimensionality of the
MOZ equations, however, a number of approximations must be
introduced to allow them to be solved for systems of chemical
interest.”*° Here we work with the 3D reference interaction site
model (3D RISM),>**"** which has previously been demonstrated
to be an effective method for qualitative modeling of many different
solution phase phenomena.”*** The 3D RISM equations relate 3D
intermolecular solvent site—solute total correlation functions (hq(r))
and direct correlation functions (c,(r)) (index o corresponds to the

solvent sites) (Figure 1) 22
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Figure 1. Correlation functions in the 3D RISM approach. (a)
Site—site intramolecular (wy5 (r)) and intermolecular (hgz'(r)) corre-
lation functions between sites of solvent molecules. The inset shows the
radial projections of solvent site—site density correlation functions:
oxygen—oxygen (OO, red solid), oxygen—hydrogen (OH, green
dashed) and hydrogen—hydrogen (HH, blue dash-dotted). (b)
Three-dimensional intermolecular solute—solvent correlation function
ho(r) around a model solute. This figure 1s based on and in part
reproduces Figure 1 from our earlier work'® and is reprinted with
permission. Copyright 2010 IOP Publishing Ltd.19.
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where Yz, (r) is the bulk solvent susceptibility function, and Nyejyent is
the number of sites in a solvent molecule. The solvent susceptibility
function ygq(r) describes the mutual correlations of sites £ and ot in
solvent molecules in the bulk solvent. It can be obtained from the
solvent intramolecular correlation function (wgy'(r)), site—site
radial total correlation functions (hSOIv(r)) and the solvent site
number density (00): Yza(r) = W v(f) + ph'(r) (Figure 1) In
this work, these functions were obtained by solution of the 1D RISM
equations of the pure solvent.”**

To make eq 1 complete, Nyjyent closure relations are intro-

duced:
ha(r) = exp(

o= 1""7Nsolvent (2)

where uq(r) is the 3D interaction potential between the solute
molecule and o solvent site, By(r) are bridge functionals, 5 =
1/kgT, kg is the Boltzmann constant, and T is the temperature.

In general, the exact bridge functions B,(r) in eq 2 are
represented as an infinite series of integrals over high order correla-
tion functions and are therefore practically incomputable, which
makes it necessary to incorporate some approximations. ” Y224 In the
current work, we use a closure relatlonshlp proposed by Kovalenko
and Hirata (the KH closure),” which was designed to improve con-
vergence rates and to prevent poss1ble divergence of the numerical
solution of the RISM equations:**
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where Eq(r) = — Pug(r) + ho(r) — co(r).

The 3D interaction potential between the solute molecule and
o site of solvent (uy(r), eq 2) is estimated as a superposition of
the site—site interaction potentials between solute sites and the
particular solvent site, which depend only on the absolute distance
between the two sites. We use the common form of the site—site
interaction potential represented by the long-range electrostatic
interaction term and the short-range term (Lennard-Jones poten-
tial).?® The Lennard-Jones parameters on atom sites were taken from

the general amber force field (GAFF) %" and partlal charges on atoms
were computed w1th the AM1-BCC approach” ~*° as was done in
our previous work."”

New Free Energy Functional. Within the framework of the
RISM theory there exist several approximate functionals that
allow one to analytically obtain values of the HFE from the total
ho(r) and direct co(r) correlation functions.'®*** Although these
functionals have been extensively used to qualitatively model
thermodynamics of different chemical systems,'®**** they generally
give HFE values that are strongly biased from experimental data
with a large standard deviation error.'®>**"#*353¢ 1 this work, we
show that the hydration free energies (HFE) of molecules ranging
from simple alkanes to pharmaceuticals can be calculated accurately
using a new free energy functional in the scope of the 3D reference
interaction site model.

We consider a HFE functional initially developed by Chandler,
Singh and Richardson, and adopted by Kovalenko and Hirata for
the 3D RISM case, which assumes Gaussian fluctuations (GF) of
the solvent:>"'**’
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where pg is the number density of a solvent sites . We use this
HFE functional here because in our recent works***! we found
that it performs better for HFE calculations than traditionally used
HNC’® or KH™ functionals for RISM HFEs. Although RISM works
with a realistic model of solvent structure, it has previously been
suggested that there is a systematic error in the cavity formation term
calculated (implicitly) by the theory.*>*** For example, the error in
RISM calculations of HFEs has previously been attributed to an
overestimation of the energy required to form a cavity in the
solvent.*>***" Kinoshita and co-workers have also highlighted the
importance of the excluded volume contribution to the hydration
free energy in the morphometric approach to the solvation free
energy and works on the hydration thermodynamics of biomole-
cules.”” We have recently shown that the partial molar volume
calculated by RISM is well correlated with the difference between
experimental and RISM calculated hydration free energies for simple
organic molecules,'”*" which suggests that it can be used with a linear
scaling coefficient as a universal correction (UC) for the 3D RISM
calculations. Therefore, we define a free energy functional which is a
linear combination of the AGh the dimensionless gartlal molar
contribution, pV, and a bias correction, b (intercept):"

AG MY = AGEE + a(pV) + b ()

where the scaling coeflicient a and intercept b values are obtained by
linear regression against the experimental data for the simple organic
molecule data set. For the combination of methods used here (e.g,
KH closure, GF free energy functional, molecular geometries
optimized at the AMI level of theory, AM1-BCC partial charges,
and Lennard-Jones parameters taken from the AMBER GAFF
forcefield), the coefficients have the values a = —3.2217 kcal/mol
and b = 0.5783 kcal/mol (more details are provided below).

We estimate the solute partial molar volume via solute—solvent
site correlation functions using the standard 3D RISM theory
expres.sion:“"44
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where 77 is the pure solvent isothermal compressibility and pg, is
the number density of solute sites Q.

B METHODS

Data Sets. To demonstrate the efficiency of the method, and
the transferability of the parameters, we have used it to calculate
HFEs for two data sets of molecules: (i) 163 neutral simple
organic molecules taken from our previous work®! and (ii) 21
druglike molecules in their neutral form with experimental HFE
data extracted from the literature. The majority of the data in our
druglike test set were taken from publications by Perlovich and
Bauer-BrandL.*>° We note that the lack of accurate and well-
documented experimental hydration free energy data for drug-
like molecules in the published literature is a signficant stumbling
block in the development of new computational solvent
models.>"** (By “well-documented” we mean that both the
methodology and the experimental conditions must be clearly
reported.) The experimental HFE data are given here as AGy,yq =
—RT In ¢,q/¢ga with HEEs in kcal/mol and concentrations in
mol/L, which corresponds to the choice of standard states
suggested by Ben-Naim.>>>* The experimental and calculated
hydration free energy data for the druglike molecules are
provided in the Supporting Information. We have chosen not
to use the data sets published as part of the SAMPL1% and
SAMPL2" challenges because these contain a large number of
pesticides and we are interested in assessing our methods on
druglike molecules.

Computational Details. RISM Calculations. RISM calcula-
tions were performed assuming a temperature of 300 K and
infinitely diluted solution. We used the Lue and Blankshtein version
of the SPC/E model of water (MSPC/E).Sé This differs from
the original SPC/E water model®” by the addition of modified
LJ potential parameters for the water hydrogen, which were
altered to prevent possible divergence of the algorithmf“’ss*60 The
Lorentz—Berthelot mixing rules were used to generate the solute—
water 1] potential parameters.’’ The following 1] parameters
(for water hydrogen) were used to calculate the interactions bet-
ween solute sites and water hydrogens: UL}{w =1.1657 A and egw =
0.0155 kcal/mol.

3D RISM Calculations. The 3D RISM calculations were
performed using the NAB simulation package®>®*~®* in the
AmberTools 1.4 set of routines.® The 3D-grid around a solute
was generated such that the minimum distance between any solute
atom and the edge of solvent box (buffer in NAB notation) was
equal to 30 A. The linear grid spacing in each of the three directions
was 0.3 A. We employed the MDIIS iterative scheme,’® where
we used 5 MDIIS vectors, MDIIS step size —0.7, residual tolerance
—10"'° The KH closure was used for solution of the 3D RISM
equations. Solvent susceptibility functions for pure water were taken
from the 1D RISM calculations.

Solvent Susceptibility Functions. Solvent susceptibility func-
tions were calculated with the 1D RISM method present in
AmberTools 14. The dielectrically consistent RISM was
employed,®” using the KH closure. The grid size for 1D-functions
was 0.025 A, which gave a total of 16384 grid points. We
employed the MDIIS iterative scheme, where we used 20 MDIIS
vectors, MDIIS step size —0.3, and residual tolerance —10 "2,
The solvent was considered to be pure water with a number
density 0.0333 A~ and a dielectric constant of 78.497, at a
temperature of 300 K. The final susceptibility solvent site—site
functions were stored and then used as input for the 3D RISM

calculations. The solvent isothermal compressibility evaluated
from the 1D RISM calculation was kg T% = 1.949459 A°.

Input Structures and Potential Parameters. The following
data are needed for 3D RISM calculations in the NAB simulation
package: (1) atomic coordinates, (2) partial charges of atoms,
and (3) atom—atom potential parameters representing the
van der Waals interactions. These parameters were assigned to
each molecule using programs distributed with the AmberTools
1.4 package.65’68’69

(1) The coordinates of each molecule were optimized using
the AM1 Hamiltonian® via the antechamber’® suite,
which uses the sqm65 program for semiempirical QM
calculations. For the data set of simple molecules, the
initial configurations for these QM geometry optimiza-
tions were taken from our previous work.>* For the data
set of druglike molecules, a low-mode conformational
search’"”® was carried out in vacuum using the
OPLS2005 forcefield in Macromodel v.9.1.”* The global
minimum energy conformer for each molecule was then
used as input for the AM1 structure optimizations.

(2) Atomic partial charges were calculated using the AM1-
BCC method,””?° where BCC stands for bond charge
correction, as implemented in Antechamber from the
AmberTools 1.4 package.é5 The BCC parameters were
taken from Jakalian et al.*’

(3) For all compounds, the L] parameters from the general
amber force field (GAFF)*’ were assigned to solute atoms
with the antechamber and tleap programs.”

Computational Expense. The calculations discussed in this
paper were performed on an Intel Core 2 Duo CPU E8600 3.33
GHz processor. The mean time required to calculate the hydra-
tion free energy of a single solute from the training set was ~30
min, while the minimum and maximum values were ~12 min and
~4$5 min, respectively, depending on the size of the molecule in
question. For the druglike molecules in the test set, the calcula-
tions took between ~30 min and ~75 min with a mean value of
~45 min. We note that the time required for a single calculation
might be significantly reduced by using advanced numerical
algorithms”* or by performing the simulations using parallel
computation.23

B RESULTS AND DISCUSSION

The HFEs calculated by 3D RISM using the GF free energy
functional have only a weak correlation with the experimental
data for both the simple molecule data set (R = 0.55, RMSE =
18.51 kcal/mol, 0 = 5.14 kcal/mol, bias = 17.78 kcal/mol) and
the druglike data set (R = 0.68, RMSE = 25.41 kcal/mol, 0 = 5.50
kcal/mol, bias = 24.81 kcal/mol. Correlation plots for both data
sets are given in the Supporting Information). The bias in the
calculated HFEs indicates that 3D RISM predicts these mol-
ecules to be too hydrophobic. However, when the error in the
calculated HFE is plotted against the calculated partial molar
volume of the solute, a very high linear correlation is observed for
both the simple molecule data set (Figure 2, R = 0.99) and the
druglike data set (Figure 2, R = 0.99). Moreover, the correlation
is equally high for all classes of molecules considered here. For
instance, in Figure 2, it is shown that the druglike molecules lie on
the line-of-best-fit calculated for the simple organic molecules.

Since the correlation observed in Figure 2 is high for all classes
of molecules, the model to predict the HFEs of drug molecules
(eq S) can be trained on the simple, organic molecules, thereby

1425 dx.doi.org/10.1021/mp200119r [Mol. Pharmaceutics 2011, 8, 1423-1429
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Figure 2. Correlation between the error in the hydration free energies
calculated by 3D-RISM-KH theory using the Gaussian fluctuations free
energy functional (AGS}}; — AGyy%)) and the calculated partial molar
volume (pV). Simple organic molecules are given as red crosses.

Druglike molecules are given as black circles.
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Figure 3. Correlation between experimental (AGj%) and calculated
(AG;;‘,{;) hydration free energies, where the calculated values are obtained
using the 3D-RISM/UC model proposed here. Simple organic molecules
are given as red crosses. Druglike molecules are given as black circles.

demonstrating the transferability of the two free model coeffi-
cients (we refer to the model as 3D-RISM/UC). The values of
the empirical coeflicients a and b obtained by linear regression
against the data set of simple, organic molecules are —3.2217 and
0.5783 kcal/mol, respectively, where the regression statistics are
R =0.96, RMSE = 0.82 kcal/mol, 0 = 0.82 kcal/mol, bias = 0.00
kcal/mol. The model gives very accurate calculations of the HFEs
of the data set of pharmaceuticals (Figure 3), where the statistics
are R = 0.94, RMSE = 1.06 kcal/mol, 0 = 0.78 kcal/mol, bias =
—0.72 kcal/mol.

To benchmark these results, we have calculated HFEs for the
21 druglike molecules using three commonly used continuum
solvent models in the scope of quantum mechanics: (1, 2) the
SM87>7® and SM6”” models using the MO6-2X density func-
tional and 6-31G(d) basis set as implemented in Jaguar;”® (3) the
polarizable continuum model using HF theory and the 6-31G(d)
basis set combined with United Atom for Hartree-Fock (UAHF)
atomic radii as implemented in Gaussian (further details of these

Table 1. Statistics for Prediction of the Hydration Free
Energies of 21 Druglike Molecules Using 3D-RISM/UC, HF/
6-31G(d) PCM, MO6-2X/6-31G(d) SMS8, and MO6-2X/
6-31G(d) SM6

RMSE bias
method R (kcal/mol) o (kcal/mol)  (kcal/mol)
3DRISM/UC 0.94 1.06 0.78 —0.72
HF/6-31G(d) PCM 0.96 1.12 0.65 0.91
MO6—2X/6-31G(d) SM8  0.94 0.82 0.79 —021
MO6—2X/6-31G(d) SM6  0.94 1.16 0.84 0.8

calculations are provided in the Supporting Information).””

These combinations of QM theory and solvent model were
selected because they gerformed well in a recent blind challenge
for HFE calculation.”® ® We note that these are also the
recommended methods for HFE calculation in Jaguar and
Gaussian, respectively. The results of these calculations are given
in Table 1. It is clear that even without additional parametrization
the 3D-RISM/UC model gives excellent estimates of HFEs that
are already as accurate as those obtained from leading implicit
solvent models. Unlike the continuum solvent models, however,
the IET model can in principle be used to probe specific
solute—solvent effects since it retains information about the
solvent structure in terms of total correlation functions (hy(r)).
Correlation functions calculated by 3D-RISM have previously
been used in fragment-based drug design,4 modeling the binding
of water® and ions® by proteins, and interpreting solvent densities
around biomacromolecules.*>**

Bl CONCLUSIONS

We have shown that accurate calculations of hydration free
energies can be obtained using the 3D-RISM/UC approach,
which is based on 3D-RISM-KH theory combined with the GF
free energy functional and a correction based on the partial molar
volume of the solute. Moreover, the empirical coefficients in the
3D-RISM/UC model can be calculated for simple organic
molecules and used to give accurate predictions for druglike
molecules, which demonstrates that they are transferable be-
tween chemical classes. For an external test set containing 21
druglike molecules from different chemical classes, the hydration
free energies calculated using the 3D-RISM/UC model were
found to be in good agreement with experimental data, with a
standard deviation of the error of approximately 1 kcal/mol,
which even without additional parametrization is comparable to
the results of long-standing and well developed implicit con-
tinuum solvent models. The results show that the 3D-RISM/UC
free energy functional gives accurate calculations of HFEs across
multiple classes of molecules ranging from simple organic molecules
to different classes of druglike molecules. Whether this trend remains
the same for the whole of druglike chemical space cannot at present
be assessed because of a lack of experimental HFE data for druglike
molecules. Moreover, further work is required to assess the accuracy
of the 3D-RISM/UC approach for biological macromolecules and to
determine whether it can be used to calculate hydration terms in the
prediction of protein—ligand binding free enelrgies.18 Nevertheless,
we believe that the model proposed here opens up new avenues for
research in the computational physical chemistry of solutions. The
current limiting step in development of the model is alack of accurate
experimental thermodynamic data for pharmaceutical and other
important classes of molecules. We hope that our findings demon-
strate the need for new computational databases of experimental

1426 dx.doi.org/10.1021/mp200119r [Mol. Pharmaceutics 2011, 8, 1423-1429
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solvation thermodynamic data for molecules taken from the full
extent of druglike chemical space.
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© Supporting Information. The complete data sets includ-
ing all experimental and calculated data and details of conver-
sions of standard state. This material is available free of charge via
the Internet at http://pubs.acs.org.
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